Sunday, November 13, 2011

On Growth and Emergence

It is often thought by people who are casually concerned with the environment and its degradation that it is important to live in harmony—in a steady-state of sorts; they ignore the primary characteristics of living organisms: living organisms grow.

One tends to imagine the idealized steady-state population dynamics of animals and plants in isolated geographical regions the ideal for human population. Unfortunately the reality is different. Nearly always such steady-state communities are extremely vulnerable to external influences; they lose their robustness because there is little selection pressure to keep such “robustness” genes in the population in the absence of changing circumstances.

Even in steady-state populations, individual organisms grow—either in number (where death rate balances growth rate) or in size (think of the massive conifers in old growth forests). Large conifers that have been around since Buddha walked the earth are still growing. The meristematic cells at the tips of their main shoot or branches are continuously dividing and are contributing to their growth in size.

To make this analogy somewhat more general, economic systems, which are indeed properties inherent of living systems (more appropriately, of communities of living systems), grow.

When economies do not grow, they become vulnerable. Free economies, like ant hills, tend to grow in fits and bursts.

On one late Fall evening in a lonely corridor across the hallowed halls of MIT, Philip Morrison, the wheel-chair bound astrophysicist, explained to me that ant hills grow by a few rather simple rules. Rule 1: make mounds. So numerous ants begin making numerous mounds over a range of area. Some mounds grow a little bit faster and others a bit slower just due to random fluctuation. Rule 2: Go to the nearest fastest growing mound. Probably they see the shadows of nearby mounds and thus find the locally tallest mounds. A recursive application of rules 1 and 2 will tend to generate a few very tall mounds with the most number of ants.

So do the economies. The fastest growing economies tend to whip up the businesses to participate and concentrate. This is true of geographical localization of economies as well. Think for example of the silicon valley, or the biotechnology mesa of San Diego.

Here comes the next analogy: self-organized behavior of crystal growth. Crystals also grow using rather simple rules of thermodynamic energy minimization. Rare and minor initial fluctuations in the rates of growth of a few crystal nuclei tend to determine the overall size distribution of crystals arising in a super-saturated sugar solution. Now, shake the solution a bit. Some of the growing crystals break up; the nuclei are redistributed. In a while a different distribution of size arises.

So it is with economies in recession. Recession has the effect of shaking up the economies. Bright folks left unemployed in Torrey Mesa in San Diego go to the medical school complexes in Alabama or biotech incubators in Madison and take root their. So too for global economies.

Very much like the dreams of the universal communes of communist manifesto, the most natural direction for the future of global economies lie in the migration of people and economies across the current archaic national boundaries. The difference here is that we are talking of pure capitalistic economy, accepting its boom and bust cycles as natural growth processes. I do not however agree that we will need to accept the social alienation that is generally associated with this view of capitalism. I believe there is room for active role of the nation states to alleviate human suffering, to act as buffers, and to promote human migration, spread of education and in promoting social acceptance associated with this migration.

What if the most vibrant of Chinese or Indian businesses find partners in Greece or Italy, and a portion of teeming Indonesian masses were to set up houses in population depleted Europe?

Perhaps the biggest barriers to internationalism are the color of our skin and the shapes of our jaws.

No comments: